Experimental Effects of Acanthopanacis Cortex Extract on the Immunity, Anti-Cancer and Obesity in Mice

Hyun Woo Jeong*, Young Ho Rho, Geum Su Lee, Cheon Joong Kim, Byung Gwan Jeon

Department of Pathology, College of Oriental Medicine, Dongshin University.
1: Department of Environmental Engineering, Dongshin University

This experimental Study was designed to investigate the effects of Acanthopanacis Cortex Extract (ACE) on the immunity, anti-cancer and obesity in mice. The results were as follows; ACE was significantly increased in the proliferation of thymocytes and splenocytes, and NO production from peritoneal macrophages in normal mice. ACE was significantly increased in the proliferation of thymocytes and splenocytes, and NO production from peritoneal macrophages in L1210 cells transplanted mice. ACE was significantly decreased in the proliferation of L1210 cells in L1210 cells transplanted mice. ACE was significantly inhibited body weight and tumor weight in S-180 cells transplanted mice. ACE was significantly increased in the mean survival days in S-180 cells transplanted mice. ACE was significantly decreased in the body weight in rats fed high fat diet. ACE was significantly decreased in the serum total cholesterol level, free fatty acid level, total lipid level, phospholipid level in rats fed high fat diet. According to above results, the authors suggest that ACE is able to be used for the herb of physiological-action.

Key words: Acanthopanacis Cortex Extract, immunity, anti-cancer, obesity

서 론

 최근 복합성 현대생활과 식생활의 변화로 인하여 당뇨병, 고혈압, 관상동맥질환, 가이북증, 비만, 종양 등이 발생되기 때문에
1) 현대인들이 많은 관심을 기울이고 있다.

 표피에는 두 유사군과 속한 낙엽수목인 오가지의 근피를
만조한 것으로 지정하였으며, 명화를 하기 때문에 각종의 관상동맥을 치료
하고, 체내화학기 때문에 몸으로 인한 펀질을 다스리며, 위암
기 때문에 정균제용으로 인한 위암치료 및 종양을 다스린다. 성 분으로는 정유 (4-methylnicotin aldehyde), tannin, palmitin,
linolenic, vitamin A, B1가 함유되어 있으며, sesamin, savinin,
sy ringaresinol monoglucoside, diglucoside 등의 lignan류도 함유되
어 있으며, daucosterol, 감히시당체, saponin 등이 함유되어 있다.

 다양한 성분의 함유와 효능을 갖고 있는 오가지를 이용한

* 교신저자: 정영우, 전남 산단대 대학 252, 동남대학교 의과대학
 · E-mail: hwdsoban@dsh.ac.kr, · Tel: 061-330-3324
 · 근본: 2005/01/17, 사용: 2005/02/15, 제목: 2005/03/21

연구로는 당뇨병의 억제 및 심장보존 활성에 미치는 효과, 유휴부
토익 관상동맥에 미치는 효과 등이 있으며, 생리활동성 불활성을 감
출하려는 노력도 진행하고 있으나 양양, 면역, 비만 등 인체의
생리활성에 미치는 전반적인 연구에 대한 보고는 아직까지 접할
수 없다.

이에 저자는 오가지를 직접 재배하여 건강 유통수록을의
개발 가능성을 확인하고자 먼저 실제 활성에 미치는 영향, 양체요
추 및 암증이 유발된 벼 lett로 인한 미치는 영향 효과 그리고 비만
이 유도된 마우스에 미치는 효과 등 생체 활성에 미치는 효과를
관찰하기로 하였다.

제료 및 방법

1. 제료
1) 세포주

세포주는 한국세포주원장에서 구입한 금성백혈병세포주인
L1210 세포주와 북한세포주인 sarcoma-180(S180) 세포주를
사용하였다.

2) 면역 및 항암 연구

면역 연구에 사용한 마우스는 (주) 다나 사이언스에서 구입한 BALB/c의 8주령 된 수컷을, 항암 연구에 사용한 마우스는 (주) 다나 사이언스에서 구입한 BALB/c의 8주령 된 수컷과 화인 실험 동물센터에서 구입한 ICR케 20±1g 수컷을 이용하였다. 사육 조건은 온도 20±3℃, 습도 55±5%, light/dark 12 hr에서 1주일 이상 적응시키면서 고형 pellet 사료와 물을 자유롭게 섭취하였다.

3) 비만 연구

체중 27.5±0.5g대의 ICR계의 비만 마우스를 1주일 이상 실험 환경에 적응시킨 후 실험에 이용하였다. 실험기간 동안 음식과 일반사료를 공급하고 고지방사료(Dyets, USA)를 자유로게 공급하였다.

4) 시료

실험에 사용된 포리안(학명: Acanthopanax Cortex, Acanthopanax sessiliflorus SEEM)은 전남 나주시에서 재배되는 것을 사용하였다. 오리자 추출액 (Acanthopanax Cortex Extract, ACE)은 포리안 60g을 증류수 4,000 mL와 함께 넣어 120분간 가열한 다음 여과로 여과한 후 2,000 mL로 얻었다.

2. 방법

1) 세포 배양조건

암세포주 (L1210 세포주, S-180 세포주)의 면역 세포 (종신 세포, 비정 세포)의 배양은 Roswell Park Memorial Institute (Sigma R4130, RPMI) 1640 배지를 사용하였고, 배지를 10% Fetal Bovine Serum (Gibco L0T, NO. 100642, FSBS와 penicillin-streptomycin(100 units/ml, 100 μg/ml)을 첨가하였다. 암세포주의 계체 배양은 1:10~1:20 비율로 3일 간격으로 하였고, 세포 증식이 미치는 시료의 영향을 관찰하기 위한 실험은 계체 배양 2일째의 세포를 사용하였다.

2) 정상 동물의 면역세포 활성도 연구

1) 실험군

Balb/c 마우스 7마리를 1군으로 정하여 Control과 Sample로 분류하였다. Control은 7일 동안 DDW를 자유롭게 부여하였고, Sample은 오리자 추출액 (Acanthopanax Cortex Extract, ACE) 0.1ml/mouse를 DDW에 혼합하여 7일 동안 부여하였다.

2) 흉선 및 비장 세포의 분리

1)의 (1)과 같이 실험 후 마우스의 흉선 및 비장 세포를Wysocki와 Miezcl 등의 방법에 따라 분리하였다. Balb/c 마우스를 정상 동물의 실험을 거쳐서 1군으로 정하여 Control과 Sample로 분류하였다. 흉선의 분리opi은 Dulebeco’s Phosphate Buffer Saline (DPBS)-A의 0.2% 50가지로 된 petri dish에서 약 2회 정도 담근 후 2회 세척한 다음 10ml 씨앗기로 조성해 났을 후 5회씩 1,500 rpm에서 10분간 원심 분리하였다. 그리고 임의로 분리된 세포를 DPBS-A에 재부여하여 3회 반복 해체한 후 흉선 및 비장 세포를 분리하였다.

3) 흉선 및 비장 세포의 증식을 측정

2)의 (2)와 같이 분리된 흉선 및 비장 세포 부유액을 RPMI 1640 배지를 혼합하고 96 well plate에 1.0x10⁶ cells/ml 농도로 접종하였다. 흉선 세포에는 Canecavaial A, Sigma C5275, Con-A) 5μg/ml을, 비장 세포에는 Lipopolyosaccharide(Sigma 1,2375, LPS) 5μg/ml을 첨가한 후 37℃, 5%H2O, 배양기에서 48시간 배양하였다. 배양 종료 4시간 전에 5μg/ml 농도로 DPBS-A에 혼합된 3-[4,5-dimethyldiazol-2-yl]-2,5-diphenyltetrazolium bromide (Sigma M2128, MTT) 용액 20μl를 각 well에 첨가하고 배양 종료시까지 온실로 밝은 병에 첨가하였다. 배양 종료 0.01N HCl에 용해된 10% Sodium Dodecyl Sulfate (Sigma L5750, SDS) 100μl를 각 well에 첨가하고 체온 상태에서 8시간 더 배양한 후 밝은 병을 microplate-reader로 570nm 하에서 측정하였다. 흉선 및 비장 세포의 증식율은 대조군의 증식율과 비교하여 세포 증식율의 백분율로 할정하였다.

(4) 복강 내 세포 분리 및 nitric oxide(NO) 생산량 측정

2)의 (2)와 같이 실험 후 장소 밑알시기 이전에 3일간의 Brewe Thiglycollate Medium (Difco 0236-17-7, TG) 2.0m를 복강 주사하였으며, 이 후 오리자 마우스의 복강에 cold PBS 10ml를 주입하여 복강세포를 수집하였다. 수집한 세포 4℃에서 1,500rpm으로 5분간 원심 분리하고 RPMI 1640 배지를 2회 세척한 후 조직 120m petri dish에 분배하여 CO2 배양기에서 4시간 동안 배양하였다. 세포 분배액 100μl와 Griess reagent (1% sulfanilamide + 0.2% Naphthyl- ethylene-diamine 2HCl + 2.5% H3PO4) 100μl를 혼합하여 96 well plate에 넣고 microplate-reader로 570nm 하에서 중활도를 측정하여 미리 정량한 NaNO2의 형성에 의한 NO 양을 측정하였다.

3) L1210 세포를 이용한 병태모델의 형성 및 면역 연구

1) 실험군

L1210 세포주를 1과 같이 계체배양하여 2x10⁶ cells/mouse로 주입한 다음 마우스의 복강에 1mL를 주사한 후 Balb/c 마우스 7마리를 1군으로 하여 Control과 Sample로 분류하였다. Control은 7일 동안 DDW를 자유롭게 주어주었고, Sample은 ACE 0.1mL/mouse를 DDW에 혼합하여 7일 동안 주어주었다.

2) 암세포 증식을 측정

1)의 (1)과 같이 실험 후 마우스의 흉선 및 비장 세포를Wysocki와 Miezcl 등의 방법에 따라 분리하였다. Balb/c 마우스를 정상 동물의 실험을 거쳐서 1군으로 정하여 Control과 Sample로 분류하였다. 해체한 후 조직 120m petri dish에 분배하여 CO2 배양기에서 배양하였다. 4시간 후에 부착된 세포를 계수하고 부착하지 않은 세포를 모래 4℃에서 1,500rpm으로 5분간 원심 분리하였다. 전결린 세포 분래를 모래 1x10⁶ cells/ml로 조제하여 96 well plate의 각 well에 세포 부유액 100μl를 분배하고 배치 100μl를
해외 37℃의 CO2 배양기에서 48시간 배양하였다. 이식된 임세포 증식율은 2)~3)과 동일한 MTT법으로 측정하였다.
(3) 희석 및 비정 색소 분리 및 증식을 측정
3)~(4)과 같이 심사한 후 상가 방법과 같이 희석 및 비정 색소를 분리한 다음 MTT법으로 증식율을 측정하였다.
(4) 복감 대식 세포 분리 및 NO 생성능 측정
3)~(4)과 같이 심사한 후 폐협 맥락시기 3일전에 3% TG 20μl을 복감 주사하였고, 이 후 심사 방법과 같이 복감 대식 세포를 분리한 다음 복감 대식 세포에서 생성된 NO의 양을 NaNO2의 경량선에 의해 NO 양을 측정하였다.
4) S-180 세포를 이식한 발매모델의 혈장 연구
(1) 실험군
5) 180세포주를 1기와 같이 제대배양하여 2x10⁶ cells/mouse로 조제한 다음 마우스의 복강에 0.2ml를 주사함으로써 체중은 유방시킨 후 ICR 마우스 8 마리로 1군으로 하여 Control과 Sample로 분류하였다. Control은 15일 이상 DDW를 자유스럽게 투여하였고, Sample은 ACE 0.1 μl/mouse를 DDW에 혼합하여 15일 이상 자유스럽게 투여하였다.
(2) 관찰 측정
4)~(1)과 같이 심사한 후 15일 후에 체중을 측정하였다. 그 후 복감암의 무게를 측정한 후에 무게를 측정으로 환산하였다.
(3) 고형암 무게 측정
4)~(1)과 같이 심사한 후 15일 후에 점검 결과 전체 중만 나머지 마우스의 복강에 있는 고형암을 적절한 비율별로 체중의 Median survival time 계산에서 제외하였다. Median survival time은 R.I. Geran 등이 기술한 방법인 말라리아의 Median survival time을 X+Y 2로 한다.

\[
\text{Median survival time} = \frac{X + Y}{2}
\]
X : 생존수가 전체동물수의 1/2 이 되는 최초의 시간(일)
Y : 생존수가 전체동물수의 1/2에서 1일 뒤 최초의 시간(일)
단, 전체동물의 수가 호수인 경우는 Median survival time은 X/2가 된다.

5) 비만 연구
(1) 비만유도 및 실험군분류
동물들을 각군에 8마리씩 배정하며, 일반사료와 DDW를 자유스럽게 7주 동안 부여하였고, 고지방사료와 DDW를 자유스럽게 7주 동안 부여한 Control, 고지방사료와 ACE 0.1 μl/mouse를 DDW에 혼합하여 7주 동안 자유스럽게 부여한 Sample A, 고지방사료와 ACE 0.2 μl/mouse를 DDW에 혼합하여 7주 동안 자유스럽게 부여한 Sample B로 나누어 7주 동안 진행하였다. 고지방사료의 조성은 다음과 같다 (Table 1).
(2) 측정측정
각 군의 동물은 실험체 4주후에 실험동물 적응에 balance 를 이용하여 측정하였다.

<table>
<thead>
<tr>
<th>Table 1. Contents and Calories of High Fat Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRINKING PROFILE</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>PROTEIN</td>
</tr>
<tr>
<td>FAT</td>
</tr>
<tr>
<td>FIBER</td>
</tr>
<tr>
<td>ASH</td>
</tr>
<tr>
<td>CARBOHYDRATE</td>
</tr>
</tbody>
</table>

(3) 채혈 및 혈청분리
각 군의 동물을 임시의 방법대로 7주간 사용한 후, 처저하여 각 군 대량 및 움직임을 측정하였다. 혈청을 균형시켜 심장에서 채혈을 실시한 다음 상온에서 30분 방치한 후 3000rpm에서 30분간 원심분리하여 혈청을 얻었다.
(4) 혈청 지질량 측정
① Total cholesterol 혈장 측정
혈청중 total-cholesterol 혈당은 Enzymatic method 원리에 의해 측정하였다.
② High density lipoprotein (HDL)-cholesterol 혈장 측정
혈청중 HDL-cholesterol 혈당은 Enzymatic method 원리에 의해 측정하였다.
③ Low density lipoprotein (LDL)-cholesterol 혈장 측정
혈청중 LDL-cholesterol 혈당은 Enzymatic method 원리에 의해 측정하였다.
④ Triglyceride 혈장 측정
혈청중 triglyceride 혈당은 Enzymatic method 원리에 의해 측정하였다.
⑤ Free fatty acid 혈장 측정
혈청중 free fatty acid 혈당은 colorimetry method 원리에 의해 측정하였다.
⑥ Total lipid 혈장 측정
혈청중 total-lipid 혈당은 Enzymatic method 원리에 의해 측정하였다.
⑦ Phospholipid 혈장 측정
혈청중 phospholipid 혈당은 colorimetry method 원리에 의해 측정하였다.
⑧ Sodium 혈장 측정
혈청중 Sodium 혈당은 colorimetry method 원리에 의해 측정하였다.
⑨ Potassium 혈장 측정
혈청중 Potassium 혈당은 colorimetry method 원리에 의해 측정하였다.
⑩ Calcium 혈장 측정
혈청중 Calcium 혈당은 colorimetry method 원리에 의해 측정하였다.
⑪ Iron 혈장 측정
혈청중 Iron 혈당은 colorimetry method 원리에 의해 측정하였다.
⑫ Zinc 혈장 측정
혈청중 Zinc 혈당은 colorimetry method 원리에 의해 측정하였다.
⑬ Copper 혈장 측정
혈청중 Copper 혈당은 colorimetry method 원리에 의해 측정하였다.
⑭ Lead 혈장 측정
혈청중 Lead 혈당은 colorimetry method 원리에 의해 측정하였다.
⑮ Cadmium 혈장 측정
혈청중 Cadmium 혈당은 colorimetry method 원리에 의해 측정하였다.
⑯ Mercury 혈장 측정
혈청중 Mercury 혈당은 colorimetry method 원리에 의해 측정하였다.
⑰ Arsenic 혈장 측정
혈청중 Arsenic 혈당은 colorimetry method 원리에 의해 측정하였다.
실험 성적

1. 정상 마우스의 면역 세포 증식에 미치는 영향

오가피 추출물이 정상 마우스의 면역 세포 증식에 미치는 영향을 관찰하기 위하여 흉선 세포, 비장 세포 및 복강 대식 세포에서 생성되는 NO의 양을 측정하였다(Fig. 1). 흉선 세포의 증식율은 Control의 증식율을 100.0±0.01% 제한하였는데, Sample의 증식율은 113.12±0.00%로 Control에 비해 유의성이 (P<0.001) 있게 증가되었다. 비장 세포의 증식율은 흉선 세포와 동일한 결과를 보였으며, Control의 증식율을 100.0±0.01% 제한하였는데, Sample의 증식율은 113.03±0.00%로 Control에 비해 유의성이 (P<0.001) 있게 증가되었다. 복강 대식세포에서 생성되는 NO의 양은 관찰한 결과 Control의 NO 양을 100.0±0.04% 제한하였는데, Sample의 NO 양은 145.25±0.01%로 Control보다 유의성이 (P<0.001) 있게 증가되었다.

2. L1210 세포 이식 마우스의 알세포 및 면역 세포 증식에 미치는 영향

오가피 추출물이 L1210 세포를 이식한 마우스의 향상 및 면역가 능력에 미치는 영향을 관찰하기 위하여 이식한 알세포로의 증식율과 복강 대식세포의 증식율을 관찰하였다. 비장 세포에서 생성되는 NO의 양을 측정하였다(Fig. 2). L1210 세포의 증식율은 Control의 증식율을 100.0±0.01% 제한하였는데, Sample의 증식율은 76.90±0.01%로 Control에 비해 유의성이 (P<0.001) 있게 L1210 세포의 증식율이 억제되었다. 흉선 세포의 증식율은 Control의 증식율을 100.0±0.03% 제한하였는데, Sample의 증식율은 114.32±0.02%로 Control에 비해 유의성이 (P<0.05) 있게 증가되었으며, 비장 세포의 증식율은 114.32±0.01%로 Control에 비해 유의성이 (P<0.001) 있게 증가되었다. 복강 대식세포에서 생성되는 NO의 양은 관찰한 결과 Control의 NO 양을 100.0±0.01% 제한하였는데, Sample의 NO 양은 110.18±0.01%로 Control보다 유의성이 (P<0.001) 있게 증가되었다.

3. S-180 세포 이식 마우스의 재생 및 고형암의 무게, 평균 생존 기간 연장에 미치는 영향

오가피 추출물이 S-180 세포를 이식한 마우스의 향상 효과에 대하여 알아보고 위하여 발병 모델의 재생 및 고형암의 무게, 그리고 평균 생존 기간을 측정하였다(Fig. 3). Control의 재생 3.53±1.23 g을 100.0±0.02% 제한하였는데, Sample의 재생은 91.48±0.02%로 Control보다 유의성이 (P<0.05) 있게 감소되었다. Control의 고형암 무게 2.13±0.29 g을 100.0±0.09% 제한되었는데, Sample의 고형암 무게는 41.18±0.13%로 Control보다 유의성이 (P<0.001) 있게 감소되었다. Control의 평균 생존 기간 18.0±0.50 일을 100.0±0.03% 제한하였는데, Sample의 평균 생존 기간은 119.4±0.06로 Control보다 유의성이 (P<0.05) 있게 연장되었다.

4. 비만 마우스의 체중 변화에 미치는 영향

오가피 추출물이 비만에 미치는 영향을 관찰하기 위하여 비만이 유도된 마우스의 체중을 실험기간 4주 후 및 실험 종료시 측정하였다(Fig. 4). 실험기간 4주 후 대조군의 평균 체중은
43.24±6.66 g를 100.00±0.02%로 환산하였는데, 대조군의 평균 체중은 정상군의 평균 체중 88.32±0.02%보다 증가되었다. 그러나 실험군 A의 평균 체중은 93.70±0.01%로 대조군보다 유의성이 (P<0.01) 있게 감소되었고, 실험군 B의 평균 체중은 93.24±0.02%로 대조군보다 유의성이 (P<0.05) 있게 감소되었다. 실험중에 대조군의 평균 체중 49.03±1.14 g를 100.00±0.02%로 환산하였는데, 대조군의 평균 체중은 정상군의 평균 체중 85.77±0.01%보다 증가되었다. 그러나 실험군 A의 평균 체중은 99.03±0.02%로 대조군과 유사하였으나 실험군 B의 평균 체중은 92.61±0.02%로 대조군보다 유의성이 (P<0.05) 있게 감소되었다.

Fig. 4. Effects of ACE on the change of body weight in mice fed high fat diet. ACE : Aminopeptidase N Extract, Normal : Group fed normal diet and administered DNPH to mice during 4 or 7 weeks, Control : Group fed high fat diet and administered DNPH to mice during 4 or 7 weeks, Sample A : Group fed high fat diet and administered ACE 0.1 mg/mouse to mice during 4 or 7 weeks, Sample B : Group fed high fat diet and administered ACE 0.2 mg/mouse to mice during 4 or 7 weeks. The data are shown as Mean±SE for 8 samples. + : Statistical significant compared with Normal group. ** : Statistical significant compared with Control group.* : P<0.05, ** : P<0.01

5. 비만 마우스의 혈청 중 total cholesterol, HDL-cholesterol, LDL-cholesterol 혈중에 미치는 영향

오거나 추출물이 비만에 미치는 영향을 관찰하기 위하여 비만이 유도된 마우스의 혈청 중 total cholesterol, HDL-cholesterol, LDL-cholesterol 혈중에 미치는 영향을 관찰하였다(Fig. 5). 혈청 중 total cholesterol 혈중을 측정한 결과, 대조군의 평균 total cholesterol 혈중량 195.33±8.14 ng/dl를 100.00±0.04%로 하였을 때, 대조군의 평균 total cholesterol 혈중량은 정상군의 평균 total cholesterol 혈중량 64.68±0.03%보다 증가되었다. 그러나 실험군 A의 평균 total cholesterol 혈중량은 93.86±0.02%로 대조군보다 감소하였고, 실험군 B의 평균 total cholesterol 혈중량은 86.86±0.03%로 대조군에 비해 유의성이 (P<0.05) 있게 감소되었다. 혈청 중 HDL-cholesterol 혈중량 측정한 결과, 대조군의 평균 HDL-cholesterol 혈중량 133.85±16.97 ng/dl를 100.00±0.05%로 하였을 때, 대조군의 평균 HDL-cholesterol 혈중량은 정상군의 평균 HDL-cholesterol 혈중량 64.13±0.02%보다 증가되었다. 그러나 실험군 A의 평균 HDL-cholesterol 혈중량은 97.76±0.01%로, 실험군 B의 평균 HDL-cholesterol 혈중량도 88.29±0.03%로 대조군에 비해 감소되었 다. 혈청 중 LDL-cholesterol 혈중량 측정한 결과, 대조군의 평균 LDL-cholesterol 혈중량 16.67±0.61 ng/dl를 100.00±0.04%로 하였을 때, 대조군의 평균 LDL-cholesterol 혈중량은 정상군의 평균 LDL-cholesterol 혈중량 44.00±0.06%보다 증가되었다. 그러나 실험군 A의 평균 LDL-cholesterol 혈중량은 97.00±0.06%로, 실험군 B의 평균 LDL-cholesterol 혈중량도 84.00±0.09%로 대조군에 비해 감소되었다.

Fig. 5. Effects of ACE on the serum total cholesterol, HDL-cholesterol level in mice fed high fat diet. ACE : Aminopeptidase N Extract, Normal : Group fed normal diet and administered DNPH to mice during 4 or 7 weeks, Control : Group fed high fat diet and administered DNPH to mice during 4 or 7 weeks, Sample A : Group fed high fat diet and administered ACE 0.1 mg/mouse to mice during 4 or 7 weeks, Sample B : Group fed high fat diet and administered ACE 0.2 mg/mouse to mice during 4 or 7 weeks. The data are shown as Mean±SE for 8 samples. + : Statistical significant compared with Normal group. ** : Statistical significant compared with Control group.* : P<0.05, ** : P<0.01

6. 비만 마우스의 혈청 중 triglyceride와 free fatty acid 혈중에 미치는 영향

오거나 추출물이 비만에 미치는 영향을 관찰하기 위하여 비만이 유도된 마우스의 혈청 중 triglyceride와 free fatty acid 혈중을 측정하였다(Fig. 6). 혈청 중 triglyceride 혈중은 증가한 결과, 대조군의 평균 triglyceride 혈중량 168.50±7.27 mg/dl를 100.00±0.04%로 하였을 때, 대조군의 평균 triglyceride 혈중량은 정상군의 평균 triglyceride 혈중량 98.42±0.05%보다 증가하였다. 그러나 실험군 A의 평균 triglyceride 혈중량도 96.83±0.05%로 실험군 B의 평균 triglyceride 혈중량도 93.08±0.05%로 대조군에 비해 감소되었다. 혈청 중 free fatty acid 혈중은 측정한 결과, 대조군의 평균 free fatty acid 혈중량 103.34±5.03 uEq/L을 100.00±0.01%로 하였을 때, 대조군의 평균 free fatty acid 혈중량은 정상군의 평균 free fatty acid 혈중량 94.94±0.02%보다 증가하였다. 그러나 실험군 A의 평균 free fatty acid 혈중량은 98.73±0.01%로 대조군보다 감소되었고, 실험군 B의 평균 free fatty acid 혈중량도 96.13±0.01%로 대조군에 비해 유의성이 (P<0.01) 있게 감소되었다.

7. 비만 마우스의 혈청 중 total lipid와 phospholipid 혈중에 미치는 영향

오거나 추출물이 비만에 미치는 영향을 관찰하기 위하여 비만이 유도된 마우스의 혈청 중 total lipid 및 phospholipid 혈중을 측정하였다(Fig. 7). 혈청 중 total lipid 혈중은 측정한 결과, 대조군의 평균 total lipid 혈중량 609.50±10.87 mg/dl를 100.00±0.02%로 하였을 때, 대조군의 평균 total lipid 혈중량은 정상군의 평균
고 참

주제 내용은 다음과 같은 내용을 포함하고 있습니다.

1. **점증**
 - 수면의 완전한 향부와 효과를 갖고 있는 오가피를 이용한 연구로는 활동유발 저형 및 심장조로 활성화에 미치는 효과와 유마로드 칼리에는 활성화하였습니다. 이런 활동을 활성화된 보건들을 증가하는 노동력이 전환되어 있으나, 활동, 면역, 비만 등 인체의 면역활성에 미치는 전반적인 연구에 대한 보고는 아직까지 발표된 적 없습니다.

2. **면역체계**
 - 면역체계는 인체내에 다양한 물질이 활성화된 능력을 가지고 있으며, 개발의 활성화가 유치한 것으로 보이며 분류되어 있는 점으로 간주된다. T세포가 참가하는 현상의 면역체계는 활성화된 면역체계의 원인이며, 또한 단위면역이 활성화된 면역체계(humoral immunity)와 세포간 면역체계(cell-mediated immunity)로 분류되며, 면역체계는 B세포가 주로 활성화하는 것으로 알려져 있으며, T세포와 병원체가 상호작용하여 면역체계를 활성화시킨다. 이로 인해 면역체계는 macrophages가 활성화되고, 즉 macrophages가 활성화를 통해 세포내에 감염이 일어나며, 세포내에 감염이 일어난 방법은 세포내에 macrophages가 활성화되어, 즉 macrophages가 활성화되고, 즉 macrophages가 활성화를 통해 전사적 손상을 증가시킨다. macrophages는 NOS(No-synthase)가 작용하여 생성되는 것으로 NOS는 constitutive NOS(cNOS)가 활성화된 대사로 전사에서 발현되는 inducible NOS(iNOS)가 작용하여 대사과정 중에 발생되는 NOS는 NO를_interleukin_1β와 IFN-γ과 Tumor Necrosis Factor(TNF)-α와 같은 cytokine 및 세포간의 세포바이로 관여하는 LPS로 인해 더욱 세포막에 배치되는 것으로 생각된다.

3. **조화**
 - 오가피의 작용을 확인하려면 L1210 세포내에 작용하지 않고 조화가 일어나는 것으로 보아 오가피는 항암 작용도 있는 것으로 판단된다.

 오가피의 항암 작용을 확인하려면 L1210 세포내에 작용하지 않고 조화가 일어나는 것으로 보아 오가피는 항암 작용도 있는 것으로 판단된다.
유의성이 있게 증가하였고, NO 억제 Control에 비해 유의성이 있게 증가하였다. 또한 5-S180 억세포를 이식한 병기 모델의 혈중과 고혈압의 무게를 측정한 결과 Control에 비해 혈중과 고혈암의 무게를 유의있게 감소시켰고, 평균 생존 기간도 유의성이 있게 연장되었다. 이와 같은 결과들은 병기 ACE는 병기 세포의 활성도 대비 세포에서 생성하는 NO가 각 분화단계에서 항염 작용이 있는 것으로 생각된다.

비만은 내재의 지방조직이 과도하게 증가된 상태의 대사 장애로 에너지 섭취량이 소비량보다 많은 에너지 불균형의 결과로 초래된다. 대체적으로 비만은 포유류의 20% 이상을 초과한 상태이나 체내지방이 남는 체중의 25% 이상, 여자는 체중의 30% 이상인 경우에 이에 해당한다.

비만은 단순성 비만과 증후성 비만으로 구별할 수 있는데, 그 중 단순성 비만은 전체 비만의 90%를 차지하고 있는 것으로 과식에 의한 잘못된 식이이나 운동부족 등으로 발생한다. 또한 비만은 그 자체로도 여러 가지 문제점이 초래할 수 있는데, 당뇨병, 고혈압, 과다활동성관절염, 고혈압, 지방간, 통증, 관절질환, 월경이상 등의 합병증을 야기시키기도 하기 때문에 임상적 연구 및 예방이 중요하다.

고지혈증으로 유도된 비만 마우스에서 오리가 추출액을 부여함으로써 비만에 미치는 효과를 실험적으로 규명하고자 4 주간의 체중을 측정한 결과, Sample A와 Sample B 모두에서 Control보다 유의성 있게 감소하였다. 실험 종료시에는 Sample B가 Control에 비해 체중을 유의있게 감소시켰다. 이는 ACE가 비만에 효과가 있음을 보여주는 결과로 생각되었다. 그러나 혈청 내 지질 함량을 측정하기 위하여 혈청 중 total cholesterol 함량, 혈청 중 LDL-cholesterol 함량, 혈청 중 triglyceride 함량, 혈청 중 free fatty acid 함량, 혈청 중 total lipid 함량은 phospholipid 함량들을 관찰하였다.

비만지수가 높으면 혈청 중 total cholesterol 함량이 증가하는 것으로 알려져 있으므로 혈청 중 total cholesterol 함량의 측정은 비만중에서 유의할 만한 의미를 지니고 있다. ACE를 부여한 비만 마우스의 혈청 중 total cholesterol 함량을 측정한 결과, Sample B에서 Control보다 유의있게 감소되어 ACE를 부여한 측정이 혈청 중 total cholesterol 감소율과 유의있게 생각된다.

혈청 중 HDL-cholesterol 함량은 세포내에 축적된 cholesterol의 제거작용에 관여하며, 비만지수가 높으면 혈청 중 HDL-cholesterol 함량이 감소하는 것으로 밝혀져 있어 혈청 중 HDL-cholesterol 함량의 변화는 단백질 증후를 판단할 수 있는 중요한 기준이 되기 때문에 혈청 중 HDL-cholesterol 함량을 측정한 결과, Sample A과 Sample Control보다 감소되었다. 이와 같은 결과는 촉매효과의 전체의 결과가 다른 것으로 이에 대한 연구는 더욱 진행되어야 할 것으로 생각된다. 또한 카테콜 도가 높으면 LDL-cholesterol 함량 농도가 높아지기 때문에 고지혈증의 심증을 완화 하기 위해 LDL-cholesterol 함량을 측정한 결과, Sample의 혈청 중 LDL-cholesterol 함량은 Control보다 감소되어 ACE가 체내에 축적된 cholesterol 함량을 유의있게 제거시키는 것으로 생각된다.

Triglyceride가 전신의 각종 지방조직의 증가부분으로서 생체 내 에너지 저장장에 관여하고 있고, 이 수치는 자각 대사 이상의 현상에 매우 중요한 역할을 하고 있어. 혈청 중 triglyceride 함량을 측정한 결과, Sample의 함량이 Control보다 감소하였고, 혈청 중 free fatty acid 함량을 측정한 결과 Sample ages Control에 비해 유의있게 감소하였다. 혈청 중 free fatty acid 함량은 다른 각질중에 유의있는 총지방산의 4-5%에 지니지 않으나 주로 염부인(Albumin)과 결합하여 존재하며, 말초조직의 중요한 에너지원이 되는 것으로, 비만, 당뇨병, 간질환 등에서 높은 수치를 초래하기 때문에 비만도가 높으면 높음을 보여 혈청 중 유리지방산의 농도가 증가하였다. 이와 같은 실험 결과를 보면 ACE가 혈청 중에 있는 유리 지방산을 분해시키고 있음을 나타내는 결과라 생각된다.

혈청 중 total lipid 함량은 총체중 감소를 보고하고, phospholipid는 생체내에서 세포막의 구성, 지방의 유출, 혈소, 혈액응고, cholino 탈에 등의 여러 기능에 관여하는 것으로 서 각각의 지질 대사 이상에 의해 증가한다. 그러므로 혈청 중 total lipid 함량과 phospholipid 함량을 측정한 결과 Sample B가 Control보다 유의있게 감소하였다. 이는 ACE가 혈청을 감소시키는 효과가 있음을 보여주어 생각된다.

이상의 연구 결과 오리가 추출액은 면역 기능의 향상, 항암 작용이 있을 뿐만 아니라 비만에도 유의있게 효능을 보여주었다. 본 연구결과들은 오리가 추출액이 신체 활성을 유의있게 촉진시키고, 항암 효과도 있어 오리가 추출액의 효능을 높이기 위한 다양한 연구를 진행하고자 한다.

결 론

오리가 추출액이 생리 활성에 미치는 효과를 실험적으로 밝히고자 면역 세포, 효능, 항암 활성 및 비만 효과 등을 관찰한 결과 다음과 같은 결론을 얻었다.

오리가 추출액은 정상 병원의 총질 세포 및 비만 세포의 증식을 유의있게 증가시켰고, 병원 세포에서 생성되는 NO의 양도 유의있게 증가시켰다. 오리가 추출액은 L1210 세포를 이식시킨 병마 도플검사에서 총질 세포 및 비만 세포의 증식을 유의있게 촉진시켰고, 병원 세포와 총질 세포의 유인수에 얼마나 증가시켰다. S-180 세포와 이식시킨 병마도플검사에서는 세포와 고혈압 무게를 유의있게 감소시켰고, 평균 생존 기간도 유의있게 연장시켰다. 오리가 추출액은 비만 마우스의 체중을 유의있게 감소시켰고, 혈청 지질 대사에서도 혈청 중 total cholesterol, free fatty acid, total lipid, phospholipid 함량들을 유의있게 억제시켰다.

감자치의 글

본 연구는 한국과학자단 지방 동물대교 산업용가공기 이
용 생물연구센터 지원에 의한 것입니다.

참고문헌

31. 賀政, 詩中若, 見山秀之, 齐村智子의 비만자수에 따른 검사항에.
관한 고함, 인제대학교 보건대학원, 1993.